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Abstract. Motivated by recent empirical evidence, we consider a large service system
in which the patience time of each customer depends on his service requirement. Our
goal is to study the impact of such dependence on key performance measures, such as expected
waiting times and average queue length, as well as on optimal capacity decisions. Since
the dependence structure renders exact analysis intractable, we employ a stationary fluid
approximation that is based on the entire joint distribution of the service and patience
times. Our results show that even moderate dependence has significant impacts on sys-
tem performance, so considering the patience and service times to be independent when
they are in fact dependent is futile. We further demonstrate that Pearson’s correlation
coefficient, which is commonly used to measure and rank dependence, is an insufficient
statistic, and that the entire joint distribution is required for comparative statics. Thus,
we propose a novel framework, incorporating the fluid model with bivariate dependence
orders and copulas, to study the impacts of the aforementioned dependence. We then
demonstrate how that framework can be applied to facilitate revenue optimization when
staffing and abandonment costs are incurred. Finally, the effectiveness of the fluid-based
approximations and optimal-staffing prescriptions is demonstrated via simulations.
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1. Introduction
Customers arriving to a service system are often impa-
tient andmay choose to abandon the queuewhile wait-
ing for their service to commence. A typical approach
in the queueing literature to model this phenomenon
is to assume that each customer is endowed with a
finite patience and will abandon if his delay in queue
exceeds that patience time. It is further assumed that
the patience time of each customer is random and is
independent of all other random variables comprising
the system, and in particular, of that customer’s service
requirement. However, in many settings, one expects
to have customers’ patience be dependent on their
individual service requirements, as is indeed observed
empirically in Reich (2012) and De Vries et al. (2017).
In this paper, we study the impact of such dependence
on system performance and optimal staffing.
To motivate our analytical study, we start by consid-

ering the following question: To what extent does the
dependence between patience and service requirement
impact various system measures? To demonstrate the
significant effects that such a dependency has on fun-
damental performance measures, we compare three
systems, differing from one another only by the joint
distribution of the service time and the (im)patience

of the customers. The three systems we consider all
have s � 100 agents, a Poisson arrival process with
rate λ � 110, and marginal service and patience times
that are exponentially distributed with rates µ � 1
and θ � 1/2, respectively. The nominal traffic intensity,
defined as the usual traffic intensity when there is no
dependence, is ρ :�λ/(sµ)�1.1.We remark that, under
mild assumptions on the abandonment distribution,
the system is always stable (reaches a steady state),
regardless of the value of the nominal traffic intensity.

While there are many metrics to measure depen-
dence, a commonly used one is Pearson’s correlation
coefficient, and it is adopted in the current example. In
particular, recall that for randomvariables S and T hav-
ing finite second moments with covariance Cov(S,T)
and variances Var(S) and Var(T), Pearson’s coefficient
of correlation is defined via

r :� Cov(S,T)√
Var(S)Var(T)

.

In our simulation study, we compare the standard
model, in which patience and service times are inde-
pendent (with r � 0), to a system with positive correla-
tion (r � 0.4) and a system with a negative correlation
(r �−0.4).
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Table 1. Simulation Estimations of Stationary Performance Measures (λ � 110, s � 100)

Wait of
Correlation Queue length Throughput served customers Prob. of waiting

Negative (r �−0.4) 10.4± 0.11 104.8± 0.04 0.09± 0.001 78.7%± 0.11%
Independent (r � 0) 21.0± 0.20 99.5± 0.10 0.20± 0.002 93.4%± 0.19%
Positive (r � 0.4) 39.9± 0.45 90.1± 0.19 0.39± 0.005 99.0%± 0.48%

Table 1 reports estimations for the following steady-
state performance metrics: expected queue length,
throughput rate (defined as the average number of ser-
vice completions per unit time), expected waiting time
of served customers, and the probability that an arriv-
ing customer is delayed in queue before entering ser-
vice. The results are based on 10 independent simula-
tion runs, each of 3,000 time units, with the first 1,000
time units serving as a warm-up period.1 The 95% con-
fidence intervals, calculated using the t-distribution
with nine degrees of freedom, are also given.
Observe that, under positive correlation, the ex-

pected queue length and expected offered wait
(defined as the average time that an infinitely patient
customer would wait before entering service) are ap-
proximately twice as large as those in the independent
case and four times as large as those in the negatively
correlated case. Observe also the substantial differ-
ences in the probability that customers find all agents
busy upon arrival. Since the nominal traffic intensity
is greater than 1, one expects almost all arrivals to be
delayed in queue. However, when r �−0.4, roughly
21% of the customers enter service immediately upon
arrival, a statistic that is typically associated with crit-
ically loaded many-server systems (or even slightly
underloaded systems), but not with overloaded ones;
see, for example, Garnett et al. (2002).
The reason for the substantial differences between

the above performance metrics under different corre-
lations can be attributed to the dramatic decrease in
the throughput rate as the correlation increases. In par-
ticular, the throughput under negative correlation is
approximately 5% higher than it is in the independent
case and 15% higher than the case with a positive cor-
relation. Furthermore, under negative correlation, the
throughput is larger than 100 per unit time, which is
the maximum achievable throughput in systems with
independent service and patience times. (In the stan-
dard independent model, the throughput is bounded
by the minimum of the arrival rate and total service
capacity of the pool—namely, by min{λ, sµ}. Since λ >
sµ in this example, the throughput in the independent
model equals sµ� 100.) In addition, even though there
is rarely any idleness in the system with a positive cor-
relation, so that all agents are working almost all the
time, the throughput in this case is about 10% smaller
than 100. These simulation results are easy to explain:
patient customers are those who get served; they

require longer-than-average service times under posi-
tive correlation but shorter-than-average service times
under negative correlation. As a result, the throughput
is lower under positive correlation and higher under
negative correlation than in the independent model.
We conclude that even moderate correlation can substan-
tially affect the system performance, and therefore staffing
decisions, as a result of its impact on the total service
rate, and thus the throughput.

Of course, Pearson’s coefficient of correlation is
only one of various metrics that measure dependence
between random variables. Therefore, a second natu-
ral question to address is whether, given the arrival
process, number of agents, and marginal service and
patience distributions, the knowledge of the correla-
tion coefficient between those latter two distributions
is sufficient to determine the performance. To answer
this question, we perform another simulation study in
which we consider systems having the same correla-
tion between the service time and patience but differ-
ing in the corresponding joint distributions. Specifi-
cally, we simulate nine groups of systems, where each
group consists of four systems, all four having arrival
rate λ � 110, number of agents s � 100, and marginal
service and patience times that are exponentially dis-
tributed with means 1 and 2, respectively, but differ-
ent dependencies between service and patience times.
The correlation coefficient is identical among the four
systems within each group but varies across the nine
groups. We use a Gaussian copula and three different
t-copulas, all with the same correlation coefficient, to
generate the four different joint distributions for each
of the nine groups; see Appendix A.1 for more details.
The simulated steady-state expected queue length for
each of the 36 systems is shown in Figure 1.

We make two important observations: First, even
though the correlation (and marginal distributions) of
the service time and patience are the same within
each of the nine groups, the queue lengths of the four
systems within each group may differ significantly.
The differences between the queue lengths are partic-
ularly large when the correlation is moderately pos-
itive (r is between 0.4 and 0.6). In particular, for the
group with r � 0.4, the min-to-max ratio of queue
length is almost 60%. Moreover, the case r � 0 demon-
strates that the dependency indeedmatters, evenwhen
the corresponding random variables are uncorrelated.
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Figure 1. Simulated Expected Queue Length for Different
Joint Distributions
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We conclude that the correlation coefficient is not a suffi-
cient statistic to determine system performance.

Second, we find that we cannot compare systems
across the groups; namely, the correlation coefficient
is not a sufficient statistic to compare systems, even
if their correlations are different. Specifically, even
though one intuitively expects to have the queue length
increase as the correlation increases, this is not true in
general. For example, the expected steady-state queue
length in the independent model could be larger than
the expected queue length in a system with r � 0.2 and
could be roughly equal to the expected queue length
in a system with r � 0.4.

To summarize, the two simulation examples above
suggest that (i) dependency between patience time and
service requirement can have substantial impacts on
system performance and that (ii) to isolate its effects,
one must consider more refined measures of depen-
dencies than simple correlation.
The Setting. To gain insights, we consider a many-
server queueing system with a single pool of statisti-
cally homogeneous agents. We assume that each arriv-
ing customer is endowed with a bivariate random
variable whose marginals represent that customer’s
service requirement and patience time, and that those
bivariate random variables are independently and
identically distributed (IID) across the customers. In
the presence of the dependence, it is essential to dis-
tinguish between the nominal service rate, denoted by µ,
which we define to be the reciprocal of the (uncon-
ditional) expected service time of all arrivals, and the
effective service rate, denoted by µeff, which is the recip-
rocal of the actual mean service time in steady state,
averaged over the customers that end up receiving ser-
vice. The key to analyzing the system is to characterize
this effective service rate, or alternatively, the through-
put rate, defined to be the long-run average number
of service completions per unit time. Equivalently, the

throughput rate can be defined as the average number
of service completions per unit time when the system
is stationary. (We will use the terms “stationary” and
“steady state” interchangeably.)

Of course, the dependence between the service re-
quirement and patience of each customer only matters
if sufficientlymany customers need towait in queue for
a sufficiently long time. (Otherwise, the effective ser-
vice rate µeff will be approximately equal to the nom-
inal service rate µ.) Therefore, we focus on overloaded
systems, where an overload is defined to hold when the
arrival rate λ satisfies λ > sµ, with s being the num-
ber of agents. It is significant that λ > sµ implies that
the system is overloaded, even if µeff can be substan-
tially larger than µ. Indeed, if this were not the case
(i.e., if the system was to stabilize at a non-overloaded
equilibrium), then waiting times would necessarily be
negligible in a sufficiently large system, in which case it
would hold that µeff ≈ µ. In turn, this implies that λ >
sµ≈ sµeff, so that the system is overloaded and waiting
times are nonnegligible. This heuristic contradictory
argument is formalized in Proposition 2.

We note that the dependence may also have substan-
tial impacts on critically loaded systems in some cases,
because a nonnegligible proportion of the customers is
delayed in queue. Since our analysis is motivated by
asymptotic considerations and, in particular, by a weak
law of large numbers (which we do not formally prove
here), the stochastic fluctuations of the queue in a criti-
cally loaded system are negligible for sufficiently large
systems; see also Remark 1. For applications in which
those stochastic fluctuations are nevertheless signifi-
cant (because the systems is not sufficiently large), we
propose a heuristic refinement in Section 6.3.

1.1. Main Goals and Contribution
Goals. In this workwe aim to quantify the impacts of a
dependency between the service requirement and the
patience of customers on key performance measures
and on optimal staffing decisions, when capacity and
abandonment costs are incurred. (Henceforth, depen-
dence or correlation refer to that between the service
time and patience time distributions.) As the simu-
lation study depicted in Figure 1 shows, quantifying
the impact of the dependence on the queueing system
requires more refined measures of dependency than
simple correlation.

To this end, we must first develop an effective ap-
proximation for the analytically intractable queueing
system. Indeed, even if the arrival process is Pois-
son and the marginal distributions of the service and
patience times are both exponential (distributional
assumptions that we do not make), the number-in-
system process is not Markovian, since the service-
time distribution of a customer in service is related
to his delay in queue. Hence, the service-time distri-
bution of each customer in service at any given time
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is, in general, different from that of any other cus-
tomer in service, rendering exact analysis intractable.
Thus, building on the fluid model for non-Markovian
many-server systems proposed in Whitt (2006a) and
Bassamboo andRandhawa (2015), we employ a station-
ary fluid model to approximate the steady-state distri-
bution of the stochastic queueing system. It is impor-
tant to note that the fluidmodel is characterized via the
full joint distribution of the service time and patience
(see Section 4.1), so that the dependence structure and
its impact on the fluid model can be studied.
Contribution. With respect to the goals above, our con-
tribution here is fourfold:
I. We explicitly characterize the effective service rate

of the fluid model in stationarity, from which the value
of the throughput rate follows immediately. Given the
throughput rate, all other key performance measures
in the fluid model (e.g., the stationary queue length,
the waiting time of served customers) can be eas-
ily computed. We demonstrate via simulation experi-
ments that our fluid model is an effective and accurate
approximation. See Section 4 for our fluid model.

II. We provide a novel framework to measure the
impact of the dependence on the fluid model and, in
turn, on the stochastic system it approximates. First,
for a given system, we study how the structure of the
conditional expected service time, conditioned on the
waiting time in queue, impacts the throughput rate
(which determines other performance measures). Sec-
ond, we compare systems differing from each other
only by the dependence structure. To this end, we rank
the “strength” of the dependence by utilizing the pos-
itive quadrant dependence (PQD) stochastic order; see
Section 3 for a background of PQD order and Section 5
for performance analysis.

III. We apply the fluid model and the framework
described in I and II to study the economic implica-
tions of the service-patience dependency by analyzing
an optimal-staffing problemwhen costs for staffing and
abandonment are incurred. In particular, we compute
the fluid-optimal staffing, as well as provide structural
results regarding how the dependence affects that opti-
mal staffing. In addition, on the basis of our fluid anal-
ysis, we provide a heuristic safety-staffing rule for set-
tings in which the fluid-optimal solution is to process
all the input (implying that it is optimal to have the
stochastic system be critically loaded), in which case
second-order stochastic fluctuations have a dominant
impact on the optimal solution. See Section 6 for the
capacity sizing problem and the heuristic refinement.

IV. Estimating the exact joint distribution can be
hard in practice. Thus, a parametric approach is war-
ranted. We therefore demonstrate that our main struc-
tural results hold for important classes of bivariate
random variables generated by copulas, facilitating
simulation experiments that can be used to estimate

possible scenarios for different joint distributions. In
particular, we focus on the class of Gaussian copulas
(see Section 3.2 for details) whose relative tractabil-
ity makes them attractive, and thus prevalent, in
modeling.

2. Related Literature
Related Queueing Models. As was mentioned above,
the fluid model we employ builds on the fluid model
proposed in Whitt (2006a) to approximate the non-
Markovian G/GI/s+GI, which has a general stationary
arrival process (the G), IID service times with general
distribution (the first GI), s statistically homogeneous
agents, and IID times for waiting customers to aban-
don the queue while waiting for service (the +GI).
Whitt’s fluid model is shown to hold as a bona fide
fluid limit in the many-server heavy-traffic limiting
regime in Kang et al. (2010) and Zhang (2013). The
fluid model in Whitt (2006a) is employed to optimize
staffing decisions when the arrival rate and number of
agents in a call center are uncertain in Whitt (2006b),
and it is used to study the impact of delay announce-
ments in Armony et al. (2009). The stationary point of
a fluid model in which the service time and patience
can be dependent is characterized in Bassamboo and
Randhawa (2015), which considers scheduling poli-
cies for customers based on their waiting times. Liu
and Whitt (2011a, b) adapt the approach in Whitt
(2006a) to study systems in which the arrivals and
staffing may vary with time. Two papers, Bassamboo
and Randhawa (2010) and Bassamboo et al. (2010), use
a fluid approach to study capacity-sizing problems and
show that the fluid model yields accurate approxima-
tions for large, overloaded systems.

Althoughmost of the literature assumes that the ran-
dom variables comprising the primitive processes of
queueing models (arrivals, service times, and patience
times when abandonment is considered) are indepen-
dent, there are a few exceptions. Both Whitt (1990) and
Boxma and Vlasiou (2007) consider a G/G/1 system in
which the service rate depends linearly on the delay
process. More recently, heavy-traffic limits for infinite-
server models in which successive service times are
dependent were developed in Pang and Whitt (2012,
2013). Li andWhitt (2014) build on the latter references
to approximate blocking probabilities in loss models
when successive service times and successive interar-
rival times are allowed to be dependent. Whitt and You
(2018) employ a robust optimization approach to con-
sider the impact of serial dependence between interar-
rival and service times in a single-server queue.

Motivated by empirical evidence that long waiting
times for admissions often lead to increased hospital-
ization times in intensive care units, Chan et al. (2017)
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analyze an M/M( f )/n queueing model (with no aban-
donment) in which service times are exponentially dis-
tributed with a mean that increases with congestion
according to a given “inflation” function f (the nota-
tion M( f ) for the service time). Upper bounds for the
waiting times in queue are developed and are shown to
be fairly accurate for small systems (with a small num-
ber of servers) or systems with low utilization. We, on
the other hand, consider large and overloaded systems.

Bivariate Stochastic Order and Copulas. Recall that
one of the goals in this paper is to compare and rank
systems having identical marginal distributions of ser-
vice and patience times but different dependence struc-
tures. To this end, we employ the PQD order men-
tioned above and copulas. We refer to Scarsini and
Shaked (1996) and Shaked and Shanthikumar (2007)
for surveys of positive dependence orders in general,
and PQD in particular, and to Joe (1997) and Nelsen
(2013) for overviews of the theory and applications
of copulas. Stochastic orders for multivariate random
variables generated by a common copula can be found
in Müller and Scarsini (2001).
The multivariate Gaussian copula is applied in

Clemen and Reilly (1999) for decision and risk anal-
ysis. Both Corbett and Rajaram (2006) and Mak and
Shen (2014) study the benefits of inventory pooling
by adopting the supermodular order to compare the
dependence of demand at multiple locations. In the
queueing literature, Müller (2000) uses the PQD order
to rank the dependence between the service time of
a customer and the subsequent interarrival time. It is
shown that stronger dependence between interarrival
and service times leads to decreasing waiting times in
the increasing convex ordering sense.

3. Measures of Dependence
In this section, we describe the measures of depen-
dence that we will use in this paper. We provide more
details in Appendix A. Let S and T be two random
variables with a finite second moment. Let f :� f (S,T)
denote the joint density of S and T having marginal
densities fS and fT , respectively.
We consider the set of all bivariate distributions

with the same marginal densities fS and fT , which we
denote by F ( fS , fT). (Note that if S and T are inde-
pendent, then their joint distribution function is in
F ( fS , fT), so this set is not empty It can be shown that
there are many other joint distributions in this set; see
Section 3.2.) We first employ a stochastic order, intro-
duced in Section 3.1, to rank the strength of the depen-
dence of the elements in F ( fS , fT). We then discuss
how to use copulas to represent joint distributions in
Section 3.2.

3.1. Measuring Dependence via Bivariate
Dependence Orders

A natural dependence concept is achieved by compar-
ing the joint distribution of two dependent random
variables X1 and X2 to the distribution of two inde-
pendent random variables with the same marginals. In
particular, X1 and X2 are said to be PQD if

� (X1 > x1 ,X2 > x2) ≥� (X1 > x1)� (X2 > x2) for all x1 , x2.

Similarly, X1 and X2 are said to be negative quadrant
dependent (NQD) if � (X1 > x1 ,X2 > x2) ≤ � (X1 > x1) ·
� (X2 > x2) for all x1 , x2.
Loosely speaking, PQD means that large values of

X1 tend to go together with large values of X2; namely,
both random variables are more likely to be large
together than if they were independent.

The notion of PQD leads to the following bivariate
stochastic dependence order; see, for example, Shaked
and Shanthikumar (2007, chap. 9).

Definition 1 (PQD Order). For random vectors (X1 ,X2)
with a joint cumulative distribution function (cdf) G
and (Y1 ,Y2) with a joint cdf H, suppose that G and
H have the same marginal cdfs F1 and F2. We say
that (X1 ,X2) is smaller than (Y1 ,Y2) in the PQD order,
denoted by (X1 ,X2) ≤PQD (Y1 ,Y2), if

G(x1 , x2) ≤ H(x1 , x2), or equivalently,
Ḡ(x1 , x2) ≤ H̄(x1 , x2) for all x1 , x2 ,

where Ḡ(x1 , x2) :� � (X1 > x1 ,X2 > x2) and H̄(x1 , x2) :�
� (Y1 > x1 ,Y2 > x2).

We can analogously define NQD order by switch-
ing the inequalities between G and H—namely,
(X1 ,X2) ≤NQD (Y1 ,Y2) if Ḡ(x1 , x2) ≥ H̄(x1 , x2) for all
x1 , x2.
It is worth noting that even though PQD order is a

partial order on F ( fS , fT) (not all the bivariate distri-
butions in F ( fS , fT) can be ranked by PQD order), it is
widely considered to be the most fundamental stochas-
tic dependence order; see Colangelo et al. (2006). Indeed,
Joe (1997) postulates that PQD order possesses all the
desirable properties that a multivariate positive depen-
dence order should satisfy and that any other stochas-
tic positive dependence order should imply PQD
order.

We can relate PQD order to Pearson’s correlation
in the following lemma, whose proof can be found in
Shaked and Shanthikumar (2007, p. 389).

Lemma 1. If (S1 ,T1) ≤PQD (S2 ,T2), then r1 ≤ r2, where ri

is the Pearson’s correlation coefficient of (Si ,Ti), i � 1, 2.
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3.2. Measuring Dependence via Copulas
A d-dimensional copula C, associated with a random
vector (X1 , . . . ,Xd) having joint cdf F andmarginal cdfs
F1 , . . . , Fd , is a joint cdf on the unit cube [0, 1]d with
uniformly distributed marginals, such that

C(F1(x1), . . . , Fd(xd))� F(x1 , . . . , xd)
for all x1 , . . . , xd , d ≥ 2. (1)

By Sklar’s theorem (e.g., Clemen and Reilly 1999, sec-
tion 2), a copula exists uniquely for any given joint
cdf F if the marginals are continuous (as we assume).
Moreover, for any marginal distribution Fi , i � 1, . . . , d,
and a copula C, there exists a joint distribution func-
tion F such that (1) holds. Thus, the use of copulas pro-
vides great modeling flexibility for practical purposes
as it places no restriction on the marginal distributions.
(In principle, we could choose any marginal distribu-
tions for S and T, and we construct a joint distribution
having those marginals.) Furthermore, copulas offer
increased tractability, since they allow us to “decou-
ple” a joint distribution of a multivariate random vari-
able into its univariate marginal distributions and the
copula, which fully captures the dependence structure
between the marginals. In our setting, copulas are use-
ful not only in generating joint distributions but also
becausemany classes of copulas can be associatedwith
PQD order. In particular, let P :� P( fS , fT) denote a
subset of F ( fS , fT) that can be ranked by PQD order;
the existence of a nonempty setP can be deduced from
(9.A.6) in Shaked and Shanthikumar (2007). It is signif-
icant that a set P can be chosen to be the set of bivari-
ate distributions generated by one of many commonly
used copulas such as, for example, the Gaussian cop-
ula, t-copula, and various Archimedean copulas (e.g.,
Frank, Joe, AMH, and Gumbel copulas). Because of
its tractability, the Gaussian copula plays a fundamen-
tal role in modeling dependent distributions. We will
therefore focus on this class of copulas and demon-
strate how our results translate to the corresponding
joint distributions.
We denote the set of joint distributions generated by

the Gaussian copula with fixed marginals fS and fT
by G :� G( fS , fT). For a given rG ∈ [−1, 1], a Gaussian
copula can be written as

C(x1 , x2)�ΦrG
(Φ−1(x1),Φ−1(x2)), x1 , x2 ∈ [0, 1],

whereΦ is the cdf of the standard normal random vari-
able and Φ−1 is its inverse, and ΦrG

is the joint cdf of
a bivariate normal with mean vector zero and correla-
tion coefficient rG. (Note that rG is not the correlation
coefficient of the resulting joint distribution, which we
denote by r.) It follows that a Gaussian copula can be
used to construct a bivariate distribution for any pre-
determined marginals and any attainable correlation

coefficient r.2 Moreover, Lemma 3 in Appendix A.2
proves that the elements in G( fS , fT) can be ranked
by r, namely, by a single parameter. This latter prop-
erty makes the Gaussian copula an attractive object of
study, because it implies that the complicated high-
dimensional dependence structure of the random vari-
ables generated by the copula can be quantified by a
scalar.

4. Model
We consider a multiserver queueing system with s sta-
tistically identical agents. Customers arrive to the sys-
tem according to a general stationary arrival process;
upon arrival, a customer enters service immediately if
an agent is available and joins the queue if all agents
are busy. We assume that each customer has a finite
patience for waiting to be served and will abandon the
queue if his waiting time exceeds that patience. A key
feature of our model is that the patience time of a cus-
tomer depends on that customer’s service requirement,
although the bivariate random variables of service and
patience times are independent across customers.

More specifically, letting Si and Ti denote the service
requirement and patience time of customer i, respec-
tively, we assume that {(Si ,Ti): i ≥ 1} are IID bivari-
ate random variables, all having the same continuous
joint density f and marginal densities fS and fT for
service time and patience time, respectively. The sup-
port of both marginal densities is assumed to be the
entire positive half of the real line. We use S and T to
denote generic random variables having joint density
f , and marginals fS and fT . We further assume that
Ɛ[S2]<∞ and Ɛ[T2]<∞, so that both random variables
have finite expectations, and the correlation coefficient
between S andT, denoted by r, is well defined.We refer
to µ :� 1/Ɛ[S] > 0 as the nominal service rate, because
µ would be the service rate if there was no waiting—
namely, if the system had sufficient capacity to operate
as an infinite-server queue.

Let λ denote the arrival rate, and let ρ :� λ/(sµ)
denote the nominal traffic intensity. We consider over-
loaded systems in which the arrival rate is larger than
the total service capacity and thus a nonnegligible frac-
tion of customers abandon the system. It will be shown
in Proposition 2 that if λ > sµ, or equivalently, ρ > 1,
then the system is overloaded for any joint distribu-
tion f .

4.1. The Fluid Model
As was mentioned above, if S and T are depen-
dent, the number-in-system process is necessarily non-
Markovian, rendering stochastic analysis prohibitively
hard.We therefore employ a deterministic fluidmodel,
as in Whitt (2006a) and Bassamboo and Randhawa
(2015), to approximate the stationary queueing sys-
tem, and we demonstrate the effectiveness of that fluid
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model via simulations. To construct the fluid model,
we replace the stochastic arrival, service, and abandon-
ment processes by corresponding deterministic flows.
In particular, we start by taking the number of agents s
to be a positive real number (not necessarily an integer)
and imagine that fluid flows into the system at rate λ.
Since each of the s agents processeswork at rate µ, fluid
flows out of service at rate sµ, so that, by the assump-
tion ρ > 1, the rate at which fluid arrives is greater than
the processing rate of all agents combined, implying
that a nonnegligible proportion of fluid leaves the sys-
tem via abandonment.
In our setting, the workload in the system depends

on the waiting time; to characterize it, we define the
work evolution function,

φ(w) :�
∫ ∞

w

∫ ∞

0
x f (x , y) dx dy , (2)

which represents the work of a unit of fluid that re-
mains in the system after waiting for w time units
in the queue. To see this, observe that φ(w) � Fc

T(w) ·
Ɛ[S | T > w], where Fc

T :� 1 − FT is the proportion of
fluid that remains in queue after waiting w time units,
and Ɛ[S | T > w] is the average work of that remaining
fluid. In steady state, the work flow into servicemust be
equal to the work flow out of service, giving rise to the
steady-state fluid equation:

λφ(w̄)� s . (3)

Observe that φ(w) is strictly decreasing in w as a result
of our assumption that fS and fT are strictly positive
over [0,∞), implying the following result.

Proposition 1. If ρ > 1, then there exists a unique w̄ > 0
that solves Equation (3).

We refer to the unique solution w̄ to (3) as the offered
wait. It represents the time in queue that a virtual
customer endowed with infinite patience would wait
before entering service when the fluid model is sta-
tionary. In other words, in the fluid model, customers
with patience greater than or equal to w̄ enter service
after waiting exactly w̄ time units in queue, whereas
the remaining customers, whose patience is smaller
than w̄, abandon the queue.
Given the steady state offered wait, we can charac-

terize other key performance measures for the fluid
model. Let a(w) denote the conditional expected ser-
vice time, conditioned on the patience being larger
than w; that is,

a(w) :� Ɛ[S | T > w]. (4)

Then aeff :� a(w̄) is the average effective service time in
steady state, so that µeff :� 1/aeff is the effective service
rate in steady state. Given the effective service rate µeff,

we can characterize the effective traffic intensity to the
system:

ρeff :� λ
sµeff

. (5)

Next, dividing both sides of the equality in (3) by sµ
gives

ρφ(w̄)� 1/µ. (6)

Noting that φ(w)� Fc
T(w)a(w)� Fc

T(w)/µeff, where Fc
T is

the complement of the cdf FT of patience time, we see
that (6) can be represented via

ρFc
T(w̄)�

µeff

µ
, or equivalently,

λFc
T(w̄)
s

� µeff. (7)

The first equality in (7) is a generalization of equa-
tion (3.9) in Whitt (2006a), which states that ρFc

T(w)� 1
in the independent model. The second equality in (7)
can be interpreted as follows: since Fc

T(w̄) is the pro-
portion of fluid that remains in the queue after w̄ time
units, and thus gets served, λFc

T(w̄)/s represents the
rate per agent at which fluid flows into service, and
this rate must equal the effective service rate of an
agent µeff.

We note that when S and T are positively dependent,
a(w)� Ɛ(S | T > w)might increase to infinity as w→∞.
However, the assumption that Ɛ[S] < ∞ ensures that
Fc

T(w)a(w) is strictly decreasing and converges to 0 as
w→∞.
Next, we compute the throughput and stationary

fluid queue, which we denote by R and Q, respectively.
Clearly, we have R � sµeff, so that

R � sµeff � sµρFc
T(w̄)� λFc

T(w̄), (8)

where the second equality follows from (7). The expres-
sion for the steady-state fluid queue length Q is derived
as follows: the amount of fluid that enters the queue
over an interval [t , t + dx) is λdx, and the proportion of
that fluid remaining in the queue t time units later after
arrival is Fc

T(t). Since all arriving fluid that is served
waits exactly w̄, it holds that

Q � λ

∫ w̄

0
Fc

T(x) dx. (9)

Observe that the fluid model is completely deter-
mined by the three elements in the primitive data set
D :� (λ, s , f ). (Note that the marginal distributions of S
and T and the nominal service rate µ are easily recov-
ered from f .) Indeed, given the model data in D, we
can compute the offered wait w̄ via (3), from which
aeff and µeff can be easily recovered via (7). Given these
latter two variables, we can compute the stationary
throughput R in (8) and fluid queue Q in (9).
Note that in an overloaded system—that is, with

w̄ > 0 (Proposition 1)—our fluid model captures “pre-
dictable” queueing effects, which are due to insufficient
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Figure 2. (Color online) Simulation and Fluid Model Under Different System Sizes and Dependencies, ρ � λ/sµ � 1.2,
s ∈ {25, 50, 100, 200}
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time and patience time is generated via a Gaussian copula.)

service capacity. This is different from non-overloaded
systems, inwhich queueing is due to stochasticity asso-
ciated with the arrival and service process. Specifi-
cally, the fluid model does not capture queueing effects
that are due to random fluctuations. The following
remark elaborates on this point from an asymptotic
perspective.

Remark 1. Even though we do not prove limit theo-
rems here, it is helpful to think of the stationary fluid
model as a weak law of large numbers for a sequence
of stationary stochastic systems. More formally, con-
sider a sequence of stochastic systems as described
above indexed by the number of agents s. Assume that
the arrival rate to system s is λs :� sλ + o(s) (where
o(s) denotes a function that increases slower than s;
i.e., o(s)/s → 0 as s → ∞) but that the joint distri-
bution f is fixed along the sequence. Letting Qs(∞)
denote a random variable that is distributed as the
stationary queue in the s system, we conjecture that
Qs(∞)/s converges in distribution to Q in (9) and that
a similar result holds for the stationary distribution of
the service process. In particular, we expect our fluid

Figure 3. (Color online) Simulation and Fluid Model Under Different System Sizes and Dependencies, ρ � λ/sµ � 1.2,
s ∈ {25, 50, 100, 200}
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model to become more accurate as the size of the sys-
tem increases, although our simulation experiments
(depicted in Figures 2 and 3) demonstrate that the sys-
tem need not be too large. It is readily seen from the
spatial scaling by s of the prelimit that the fluid model
does not capture fluctuations of order o(s). Hence, the
fluid queue and the offered wait are both zero when
the system is not overloaded (i.e., when ρ ≤ 1). See also
Proposition 2.

4.2. Numerical Examples
We now examine the accuracy of the fluid approxi-
mation for overloaded systems via simulation. To con-
duct the numerical experiments, we vary the size of
the system (number of agents) from 25 to 200 and
the arrival rate such that ρ � 1.2 for all the systems
we consider. In the first numerical study, depicted in
Figure 2, the arrival process is Poisson with rate λ,
and the service time S and the patience time T are
exponentially distributed with means 1 and 2, respec-
tively. (Recall that the number-in-system process is not
Markovian, so that steady-state quantities cannot be
computed for the stochastic systems.) To move away
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from the exponential assumption, we perform another
numerical study, depicted in Figure 3, in which we
consider a renewal arrival process with Erlang(2, 2λ)
interarrival-time distribution (namely, Erlang with a
shape parameter 2 and a rate parameter 2λ, so that
the arrival rate is λ); service time S is lognormal with
LN(1, 2); and the patience time T is lognormal with
LN(2, 2), where we use LN(a , b) to denote the lognor-
mal distribution with mean a and variance b. (Note
that the mean service time is 1 and mean time to aban-
don is 2 for the given lognormal distributions.) In both
numerical studies we plot the simulated average wait-
ing time of served customers, the average throughput,
and average queue length in steady state, and we com-
pare those simulation results (curves indicated by the
number of agents s) to the corresponding fluid esti-
mates (the “Dependent fluid” curves). The through-
put and queue length are both plotted scaled by the
number of agents s. To compare the result to the inde-
pendent model, we also plot the fluid estimates of the
independent model (the “Independent fluid” curves).
It is clear from the simulations that the fluid model

is accurately predicting the steady-state metrics of
overloaded systems, even for relatively small sys-
tems (with 25 agents), and that the accuracy does
not depend on exponential distributions and Poisson-
process assumptions. Furthermore, as was already
demonstrated in Section 1, the independent model
does not give useful approximations even for systems
with moderate dependence.
We next demonstrate how the effective traffic inten-

sity ρeff in (5) changes with the nominal traffic inten-
sity ρ and the joint distribution f ; the results are shown
in Table 2. As before, S and T are taken to be expo-
nentially distributed with means 1 and 2, respectively,
and two different joint distributions are generated via
Gaussian copulas, one with r � −0.4 and the second
with r � 0.4.
It is seen that even moderate dependence (as cap-

tured by the correlation) may have a large impact on
the effective system load. For example, when ρ � 1.2
and r � −0.4, the effective traffic intensity is only
ρeff � 1.08. (A system with a traffic intensity of 1.08
can be considered to be critically loaded, and not over-
loaded, for practical purposes; see Garnett et al. 2002.)
On the other hand, when ρ� 1.1 and the dependence is
positive with r � 0.4, the system is effectively severely

Table 2. A Comparison of ρeff for Different ρ,
ρ ∈ {1, 1.05, 1.1, 1.2.1.3, 1.5}

1 1.05 1.1 1.2 1.3 1.5

ρeff (r �−0.4) 1.0 1.02 1.04 1.08 1.13 1.22
ρeff (r � 0.4) 1.0 1.12 1.23 1.42 1.60 1.97

congested with ρeff � 1.23. These differences have sig-
nificant economic consequences: when ρ� 1.2, approx-
imately 16.7% of the customers are expected to aban-
don in the independent model (since a proportion,
(1.2− 1)/1.2 ≈ 0.167, of the arrivals abandon), but only
about 7.4% (a proportion (1.08− 1)/1.08) end up aban-
doning in our example with negative correlation. By
contrast, when ρ� 1.1, roughly 9% of the customers are
expected to abandon in the independent model, but
18.7% are expected to abandon in our example with
positive correlation. We study the economic aspect
of our results in Section 6 in the context of optimal
staffing.

5. Performance Analysis
Recall that the fluid model is fully characterized by the
primitive data set D � (λ, s , f ). In this section, we ana-
lyze the impact of each of the three components inD on
the fluid system by fixing the other two components. In
particular, for a given joint distribution f , in Section 5.1
we study the effect of changes to the arrival rate λwhen
s is fixed, and the effect of changing the staffing level s
when λ is fixed, on the throughput. Next, in Section 5.2
we quantify how the throughput is impacted by the
dependence structure, employing the PQD order and
Gaussian copula discussed in Sections 3.1 and 3.2. To
this end, we fix λ and s and the two marginal densities
fS and fT , and we vary the joint distribution f .
However, we first prove that it is sufficient to

know the value of the nominal traffic intensity—
equivalently, the values of λ, s, and µ—in order to
determine whether the system is overloaded. (The sys-
tem is considered to be overloaded if w̄ > 0.) We have
already observed that negative dependence of S and T
decreases the load of the system relative to the inde-
pendent case. On the other hand, it is not immediately
clear whether ρ ≤ 1 implies that w̄ � 0 when S and T
are positively dependent. Specifically, a self-sustained
overload may exist in this case, because a large initial
queue leads to a slow effective service rate, which in
turn leads to having a large queue. The next proposi-
tion shows that the nominal traffic intensity determines
whether the fluid model is overloaded. In particular,
a stationary fluid system with negative dependence
remains overloaded if ρ > 1, and overloads cannot be
self-sustained when ρ ≤ 1.

Proposition 2. The following three statements are equi-
valent:

(i) The nominal traffic intensity is strictly greater than 1;
ρ > 1.
(ii) The effective traffic intensity is strictly greater than 1;

ρeff > 1.
(iii) The offered wait is strictly greater than 0; w̄ > 0.
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Figure 4. (Color online) Conditional Service Time Under Different Distributions Generated by Gaussian Copula
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Throughout this section we assume that ρ > 1. Let

g(w) :� Ɛ[S | T � w]. (10)

We refer to the function g as the conditional service
time (CST). Then an increasing conditional service
time (ICST) implies a positive dependence, whereas a
decreasing conditional service time (DCST) implies a
negative dependence, between S and T. The indepen-
dence between S and T implies a constant conditional
service time (CCST).
In general, for a given bivariate random variable
(S,T), the CST need not be a monotone function. In
Appendix A.3 we provide natural sufficient conditions
for monotone conditional service time (MCST), and we
link the monotonicity of the CST to PQD and Gaussian
copula introduced in Section 3. In particular, Lemma 5
states that, for (S,T) ∈ G, r > 0 implies that (S,T) is
PQD and has an ICST, whereas r < 0 implies that (S,T)
is NQD and has a DCST. This monotonicity of the
CST can be observed in Figure 4, which plots curves
of the CST for different bivariates in G. In this fig-
ure, the marginal service and patience times S and T
are exponential random variables with means 1 and 2,
respectively.

5.1. Impact of Arrival Rate and Service Capacity on
Performance Measures

We now analyze the effects of the arrival rate λ and
number of agents s on the throughput R. In a con-
gested system with nonnegligible offered waits, the
served customers are also the more patient customers.
If S and T are positively dependent, served customers
also tend to require relatively long service times, so
that, as the arrival rate increases, the offered wait and,
in turn, the effective mean service time increase as
well, so that throughput decreases. On the other hand,
when the dependence is negative, served customers
tend to require short service times. As the arrival rate

λ increases, the offered wait increases, leading to more
abandonment and, therefore, higher effective service
rate and throughput. In either case, as the next propo-
sition shows, if f has an MCST, then the throughput
R is a monotone function of λ. Specifically, for given s
and f , let R(λ) be the throughput when the arrival rate
is λ. The assumption ρ > 1 implies that the domain of
R(λ) is (sµ,∞).
Proposition 3. R(λ) is decreasing if f has an ICST and is
increasing if f has a DCST.

An important managerial insight that follows from
Proposition 3 is that congestion does not necessar-
ily lead to performance degradation. In particular,
if f has a DCST, then waiting “strains” the cus-
tomers that have short patience times and long service
times, thus increasing the effective service rate and the
throughput. This self-selection of the customers can be
exploited by appropriately staffing the system, as we
will show in Section 6.

The following corollary follows immediately from
Lemma 5 and Proposition 3.
Corollary 1. For (S,T) ∈G, R(λ) is decreasing if r > 0, and
R(λ) is increasing if r < 0.
We next consider the throughput as a function of the

capacity when the arrival rate is fixed. To this end, let
R(s) denote the throughput as a function of the capac-
ity s when λ and f are fixed. The assumption ρ > 1
implies that 0 ≤ s < λ/µ—namely, the domain of R(s)
is [0, λ/µ).
Proposition 4. R(s) is convex increasing if f has an ICST
and is concave increasing if f has a DCST. In particular,
R(s) is linear if f has a CCST.
Unlike Proposition 3, in which the monotonicity of

the throughput in λ depends on the dependence struc-
ture, the throughput is always increasing in s, regard-
less of the dependence, when λ is fixed. In the spe-
cial case with independent service and patience times,
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Table 3. A Comparison of Throughputs Under Different Nominal Traffic Intensities (s � 100)

r �−0.4 r � 0.4

Throughput Gap Throughput Gap

λ ρ Simulation Fluid Absolute Percentage Simulation Fluid Absolute Percentage

100 1 98.01 100.00 1.99 2.03 94.34 100.00 5.66 6.00
105 1.05 101.66 103.20 1.55 1.52 93.09 93.44 0.35 0.38
110 1.1 104.82 106.00 1.18 1.13 90.08 89.79 0.29 0.33
120 1.2 110.26 110.96 0.70 0.63 84.78 84.75 0.03 0.03
130 1.3 114.89 115.37 0.48 0.41 81.17 81.16 0.01 0.01
150 1.5 122.75 123.08 0.33 0.27 76.12 76.11 0.01 0.01

the relation between the throughput and the capac-
ity is linear. The structural properties of R(s), stated
in Proposition 4, facilitate the analysis of the staffing
problem for revenue maximization in Section 6.
The intuition behind the fact that the throughput

grows at a rate faster or slower than capacity s when f
has an MCST can be explained as follows. If f has an
ICST, then as capacity s increases, the offered wait w̄
decreases so that the effective service rate µeff increases.
The throughput sµeff thus increases superlinearly in s.
On the other hand, if f has a DCST, the effective service
rate µeff decreases with s, and thus the throughput sµeff
grows sublinearly in s.

For the Gaussian copula, we obtain the following
corollary to Proposition 4.
Corollary 2. For (S,T) ∈ G, R(s) is convex increasing if
r > 0, and R(s) is concave increasing if r < 0.

5.2. Impact of Dependence Between Service and
Patience on Performance

We now consider how the strength of the dependence,
as ranked by PQD order, impacts system performance.
To this end, we fix the arrival rate λ and the num-
ber of agents s, as well as the marginals fS and fT .
Let (S1 ,T1) and (S2 ,T2) denote two bivariate random
variables both in a subset P( fS , fT) of F ( fS , fT) whose
elements can be ranked by PQD order (see Section 3.1).
Let Ri , wi , and Qi denote the throughput, offered wait,
and stationary queue, respectively, in the fluid model
of a systemwith joint service time and patience (Si ,Ti),
i � 1, 2. The next result validates the intuition that the
throughput is smaller under positive dependence and
larger under negative dependence.
Proposition 5. If (S1 ,T1) ≤PQD (S2 ,T2), then R1 ≥ R2,
w1 ≤ w2 and Q1 ≤ Q2.
It is significant that the statement in Proposition 5

can be strengthened if one considers particular families
of joint distributions with given marginals. In particu-
lar, if both bivariate random variables are generated via
a Gaussian copula, then the inequalities in the state-
ment are strict, as the next result shows.
Corollary 3. If (S1 ,T1), (S2 ,T2) ∈ G( fS , fT) and r1 < r2,
then R1 > R2, w1 < w2 and Q1 <Q2.

5.3. Numerical Examples
We first demonstrate the statement of Proposition 3
and Corollary 1. In Table 3 we compare the throughput
of different systems where the capacity s is fixed at 100
and the nominal traffic intensity ρ increases from 1.0
to 1.5 as the arrival rate λ varies. We also compare the
throughput calculated by our fluid model with those
observed by simulations. In the example, (S,T) is gen-
erated via a Gaussian copula, with S and T being expo-
nentially distributed with means 1 and 2, respectively.
The gaps between the fluid predictions and the sim-
ulated values of the throughput are also reported. It
is readily seen that the throughput is increasing in λ
when r �−0.4 (representing negative dependence) and
is decreasing in λ when r � 0.4 (representing positive
dependence). Moreover, the changes to the throughput
as λ increases are substantial. We remind the reader
that for any ρ ≥ 1, the throughput is fixed at sµ � 100
when S and T are independent.

We note that the gaps between the fluid estimates
and the corresponding simulation experiments are the
largest when the system is critically loaded (ρ � 1),
because stochastic fluctuations, which are of lower
order than the dynamics captured by the fluid model
(see Remark 1), play a dominant role when the fluid
estimate is zero for the system.We consider the staffing
problem in the next section and propose a heuristic
refinement that is based on diffusion approximations
for critically loaded systems.

We next validate the result in Proposition 4. Figure 5
compares the throughputs obtained from simulations
(discrete marks) and from fluid models (dashed line)
under different capacities and joint distributions. We
vary the capacities from 10 to 90 while keeping the
arrival rate fixed at λ� 100. Service time S and patience
time T are exponentially distributed with means 1
and 2, respectively, and the bivariate (S,T) is gener-
ated via Gaussian copulas for different values of r.
The convexity of R(s) when r > 0 and the concavity
of R(s) when r < 0 are apparent. When service and
patience times are independent, so that r � 0, R(s) lin-
early increases in s (solid lines).
Finally, we numerically validate the result in Propo-

sition 5.We take S and T as in the former two examples,
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Figure 5. (Color online) A Comparison of Throughputs Under Different Capacities (λ � 100, s Ranges from 10 to 90)
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Notes. Positive dependence (left): throughput convex increasing with s. Negative dependence (right): throughput concave increasing with s.
The independent case (solid lines with squares): throughput is linear increasing with s.

and again we employ a Gaussian copula to generate
their joint distribution. We fix λ � 120 and s � 100, and
we plot the throughput as a function of the correlation
coefficient r. Figure 6 reveals the significant impact of
the dependence on the system performance. In partic-
ular, the throughput when r � 1.0 is only half of that
under r �−0.64 (which is the minimal attainable corre-
lation coefficient when the twomarginals are exponen-
tially distributed). The increase in the average queue
length is even more salient: the fluid queue increases
from 11.9, when r �−0.64, to 123.7 when r � 1.

6. Economics of Capacity Sizing
In this section we apply the results derived for the sta-
tionary fluid model to develop fluid-optimal solutions
to a capacity-sizing problem under a linear cost struc-
ture. We start in Section 6.1 by considering the optimal
staffing under the first-in-first-out (FIFO) policy.3 It is
significant that the analysis we apply was performed

Figure 6. (Color online) A Comparison of Throughputs and Queue Lengths for Different Systems with Service and Patience
Times Generated by Gaussian Copulas
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for overloaded systems having ρ > 1 (recall Proposi-
tion 2) but that it is sometimes optimal to staff the sys-
tem so as to have it be critically loaded—namely, have
ρ � 1; see Proposition 6. In the latter case, our fluid
model is too crude an approximation for the stochas-
tic system (since the queue and thus the proportion
of abandonment are both null in the fluid model of
critically loaded systems), and stochastic refinements
must be considered. Thus, in Section 6.3 we propose a
heuristic refinement based on existing approximations
for critically loaded systems. The effectiveness of the
fluid-based and the heuristic prescriptions are verified
via simulations.

6.1. Capacity Sizing Under FIFO Policy
We study the capacity-sizing problem when linear
staffing and abandonment costs are incurred. Let c
denote the unit cost of capacity, and let p denote the
penalty associated with an abandonment. For a given
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arrival rate λ, we consider the following cost optimiza-
tion problem for the fluid system:

min
s≥0

Cλ(s) :� cs + pαλ(s), (11)

where αλ(s) is the abandonment rate when the arrival
rate is λ and capacity is set to s. The penalty for aban-
donment can be considered as the opportunity cost
of a lost customer or as the reputation cost resulting
from customer dissatisfaction. Hence the cost function
Cλ(s) is a combination of the personnel cost incurred
by capacity allocation and the customer-related cost
induced by abandonments.
Equivalent to (11), we can maximize the profit func-

tion Πλ(s) :� pRλ(s) − cs, where Rλ(s) is the through-
put when the arrival rate is λ and capacity is s. In
the standard model (with independent service and
patience), the throughput is Rλ(s)�min{λ, sµ}, so that
Πλ(s) � p min{λ, sµ} − cs. Clearly, an optimal solution
to the problem mins≥0Πλ(s) cannot have the number
of agents s be larger than the offered load λ/µ, for
otherwise, the cost of the “extra capacity” s − λ/µ can
be eliminated without reducing the throughput (the
throughput stays λ as long as s ≥ λ/µ). In the indepen-
dent model, the optimal capacity is trivial to compute
because the profit-maximization problem reduces to
maximizing (pµ − c)s, which is positive if and only if
pµ > c. In the latter case, the optimal capacity is clearly
s∗λ � λ/µ. See similar results in Whitt (2006b) and Ren
and Zhou (2008).

When service times and patience are dependent, the
throughput is determined by their joint distribution,
in addition to the arrival rate and staffing, so that the
optimal-staffing problem is no longer trivial. Never-
theless, similar to the independent case, it is easy to
see that the optimal capacity s∗λ must satisfy s∗λ ≤ λ/µ,
implying that (11) is equivalent to

min
0≤s≤λ/µ

Cλ(s)� cs + pαλ(s). (12)

Note that αλ(s)� λFT(w), where w solves (3), so that

Cλ(s)� cs + pαλ(s)� λ[cφ(w)+ pFT(w)]
� λ[cFc

T(w)a(w)+ pFT(w)].
We can equivalently optimize over w and restate the
optimization problem:

min
w≥0

C̄λ(w) :� cFc
T(w)a(w)+ pFT(w). (13)

Differentiating C̄λ(w) with respect to w gives C̄′λ(w) �
fT(w)(p − c g(w)), and setting the derivative to 0 gives
us the following first-order condition: g(w) � p/c. To
interpret the latter equality, note that p/g(w) repre-
sents the marginal revenue of adding capacity; in opti-
mality, this marginal revenue must equal the marginal
cost c of added capacity. The above derivation gives
rise to the following proposition. Let g(∞) denote the
limit of g(w) as w→∞, whenever the limit exists.

Proposition 6. Under FIFO,
(i) If f has an ICST, then the critically loaded regime with

capacity s∗λ � λ/µ is fluid optimal if and only if c < pµ.
Otherwise, if c ≥ pµ, then no capacity should be allocated.

(ii) If f has a DCST, then the overloaded regime is fluid
optimal if and only if g(∞) < p/c < g(0). In this case, the
optimal capacity is s∗λ � λFT(w∗)a(w∗), for w∗ :� g−1(p/c).
Otherwise, if p/c ≥ g(0), then the critically loaded regime
with capacity s∗λ � λ/µ is fluid optimal. If p/c ≤ g(∞), then
no capacity should be allocated.

We remark that the conditions in the second part
of the proposition are always satisfied when (S,T) is
generated by a Gaussian copula with r < 0.
As was discussed above, when pµ < c, then service

is unprofitable in the independent model. The same
is true for systems with positive dependence, because
the throughput in such a system is no larger than the
throughput sµ of the independent model. However,
Proposition 6 shows that when f has a DCST, the effec-
tive service rate, and thus the throughput, can be suf-
ficiently high to warrant service profitable even when
pµ < c.
Proposition 6 is concerned with the structure of the

dependence in a given system. The next result consid-
ers the comparative statics focusing on the dependence
measured by the PQD order. To state the result, recall
the setting of Proposition 5. In particular, fix the arrival
rate λ, capacity s, and the marginal densities fS and fT .
Let (S1 ,T1) and (S2 ,T2) be two bivariate random vari-
ables in a set P( fS , fT) ⊆ F ( fS , fT) whose elements can
be ranked by PQD order. For i � 1, 2, let C∗i denote the
optimal cost when the service time and patience are
distributed as Si and Ti , respectively.

Corollary 4. If (S1 ,T1) ≤PQD (S2 ,T2), then C∗1 ≤ C∗2.

It follows from Corollary 4 that the optimal cost is
monotone in the dependence strength. However, an
analogous result for the optimal staffing does not nec-
essarily hold, as will be seen in the numerical exam-
ple presented in Table 4. Nevertheless, one intuitively
expects that when abandonments are “too costly”—
namely, if the abandonment penalty p is sufficiently
large relative to the staffing cost c—then a stronger
dependence will also imply a larger optimal staffing
level, because a stronger dependence implies increased
abandonment for any given staffing level. This intu-
ition is formalized in the next proposition. To state
it, we need the following definition. Let h be a real-
valued function. We say that h satisfies the principle of
permanence at z � 0 when the following holds: if there
exists a positive sequence {zn : n ≥ 1} of distinct num-
bers such that zn→ 0 as n→∞ and h(zn) � 0 for all n,
then h(z)� 0 in a neighborhood of z � 0. In particular,
h cannot have infinitely many roots in any finite inter-
val containing 0 unless it is identically equal to 0 over
such interval.
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Table 4. Optimal Staffing of Systems with Dependencies (λ � 100)

Correlation Fluid optimal Simulation optimal Optimality gap

r Capacity Cost Capacity Cost Absolute Percentage

p/c � 0.8
−0.64 19 55.18 19 55.18 0.00 0.0
−0.6 20 58.29 20 58.29 0.00 0.0
−0.4 22 69.78 21 69.78 0.00 0.0
−0.2 14 78.81 14 78.81 0.00 0.0
0 to 1 0 80.00 0 80.00 0.00 0.0

p/c � 1.25
−0.64 36 71.62 36 71.62 0.00 0.0
−0.6 39 75.25 38 75.23 0.02 0.0
−0.4 55 88.63 54 88.58 0.04 0.1
−0.2 79 98.02 78 97.93 0.09 0.1
0 100 104.14 92 102.71 1.43 1.4
0.2 100 105.40 97 105.20 0.20 0.2
0.4 100 106.95 102 106.91 0.04 0.0
0.6 100 109.06 102 108.12 0.94 0.9
0.8 100 111.86 105 108.99 2.88 2.6
1 100 115.40 106 109.47 5.94 5.4

p/c � 3.5
−0.64 86 101.18 83 100.99 0.19 0.2
−0.6 91 102.78 87 102.42 0.36 0.4
−0.4 100 106.86 98 106.55 0.31 0.3
−0.2 100 108.91 102 108.72 0.19 0.2
0 100 111.59 104 110.22 1.38 1.3
0.2 100 114.98 106 111.27 3.71 3.3
0.4 100 119.46 108 112.17 7.30 6.5
0.6 100 125.37 108 112.76 12.61 11.2
0.8 100 133.22 109 113.32 19.90 17.6
1 100 143.13 110 113.63 29.50 26.0

Consider the setting of Corollary 4, and let s∗i (p/c)
denote the optimal capacity as a function of the
penalty-cost ratio p/c, when the service time and
patience are (Si ,Ti). Let gi(z) denote the corresponding
conditional expectation, defined in (10), i � 1, 2.

Proposition 7. Assume that (i) (S1 ,T1) ≤PQD (S2 ,T2);
(ii) fi has a DCST, i �1, 2; and (iii) h(z) :� g1(z)− g2(z) sat-
isfies the principle of permanence at z � 0. Then there exists
M satisfying 0 <M < g2(0) such that s∗1(p/c) ≤ s∗2(p/c) for
all p/c ∈ (M, g2(0)).

We note that condition (iii) in Proposition 7 is a weak
technical condition ensuring that g1 and g2 do not cross
infinitely many times in the neighborhood of 0. Any of
the following three conditions is sufficient for (iii) to
hold: (1) h(0), 0 (which typically holds); (2) if h(0)� 0,
then h′(0), 0; or (3) h admits a Taylor series expansion
at 0.

If the bivariates are generated via a Gaussian copula,
the monotonicity of the optimal staffing in Proposi-
tion 7 is strict, as stated in the following corollary.

Corollary 5. If for (S1 ,T1), (S2 ,T2) ∈G( fS , fT) it holds that
r1 < r2 < 0, then there exists M > 0 such that s∗1(p/c) <
s∗2(p/c) for all p/c > M.

6.2. Numerical Study
We now present numerical and simulation examples
to demonstrate the accuracy and the limitations of the
optimal fluid solution to problem (11) described in
Proposition 6. The system we consider has a Poisson
arrival process with arrival rate λ � 100; the marginal
service time and patience distribution are exponen-
tially distributed with means 1 and 2, respectively; and
the joint distributions of service and patience times are
generated via Gaussian copulas with correlation coef-
ficients ranging from −0.64 to 1. (Recall that for Gaus-
sian copulas the correlation coefficient determines the
joint distribution and that r � 0 corresponds to the
independent case. Moreover, r � −0.64 is the mini-
mum attainable correlation coefficient for exponential
marginals.) In the three examples, we fix c � 1 and
vary the penalty p; in particular, we consider the values
p � 0.8, p � 1.25, and p � 3.5. Note that in the first case
(with p � 0.8), service is not profitable in the indepen-
dent and positively dependent models. On the other
hand, p �3.5 represents an extreme case of a high aban-
donment penalty.

In Table 4 we compare the fluid-optimal capacity
and cost (shown in the “Fluid optimal” column) to the
corresponding optimal values obtained from simula-
tion experiments (these appear in the “Simulation opti-
mal” column). The optimality gap between the fluid



Wu, Bassamboo, and Perry: Service System with Dependent Service and Patience Times
Management Science, 2019, vol. 65, no. 3, pp. 1151–1172, ©2018 INFORMS 1165

prescription and the true optimum is shown in the
third column of the table. The simulation results are
based on 10 independent runs; when a critically loaded
regime is fluid optimal, each run lasts for 20,000 time
units with the first 10,000 time units serving as the
warm-up period. For overloaded systems, each run
stops after 3,000 time units with the first 1,000 time
units serving as the warm-up period. Before elaborat-
ing on the numerical results, we make the following
quick observations: First, when p � 0.8 (so that pµ < c),
operations can be profitable when the dependence is negative,
provided the staffing is done correctly, even though it
is not profitable to operate when service and patience
times are independent or positively dependent. Sec-
ond, we observe that the optimal staffing is not mono-
tone in the correlation r (and thus in the dependence
strength) when p � 0.8 but is monotone for the other
two cases with larger values of p; see Corollary 5.
Finally, the optimality gap is relatively negligible in
the overload regime, but the gap can be large when
the system is critically loaded—in particular, when the
dependence is strong and positive.
More specifically, when the service time and

patience are negatively dependent, it is optimal to oper-
ate in the overload regime. In this regime, the fluid
queue serves as a first-order approximation for the
queue process, and the stochastic fluctuations about
the fluid are of lower order, and so are negligible in
large systems. As a result, the optimality gap between
the optimal fluid prescription and the true optimum,
as evaluated via the simulations, is negligible. How-
ever, there are considerable optimality gaps when the
dependence is positive, and the fluid-optimal solution
for the staffing problem puts the system in the critically
loaded regime. In this case, the stochastic fluctuations,
which are not captured by the fluid model, become
dominant. As should be expected, the optimality gap
increases as the cost of abandonment and the strength
of the dependence increase. In particular, when the
dependence is strong (r ≥ 0.6) and abandonment cost
is high (p � 3.5), the optimality gap is too substantial
for the optimal fluid staffing to be considered a useful
guideline.
Even though p � 3.5 represents an extreme case of

a high abandonment penalty relative to the staffing
cost, the results in Table 4 suggest that taking stochas-
ticity into account can lead to substantial improve-
ments in critically loaded systems, even more so than
in the independent model. However, studying the opti-
mal staffing problem in this setting requires a refined
second-order (diffusion type) approximation to the
system, which is beyond the scope of this paper. We
mention that extensive simulation experiments sug-
gest that the safety capacity needed to achieve opti-
mality in the critically loaded regime is of order

√
λ,

which is consistent with diffusion approximations for
many-server queueing systems without dependence

(see Halfin and Whitt 1981, Garnett et al. 2002). In
the next section we propose an algorithm to compute
effective staffing recommendations for critically loaded
systems with dependencies that are based on our char-
acterization of the effective service rate combined with
existing results for the independent model.

6.3. A Heuristic Stochastic Refinement for the
Critically Loaded Case

To refine the first-order staffing recommendation pre-
scribed by the fluid model when the service time
and patience are positively dependent, we propose the
following algorithm, based on the diffusion approxi-
mation for the independent model (the Erlang-A) in
Garnett et al. (2002). Consider a system having Pois-
son arrivals with rate λ, exponential service time with
rate µ, exponential patience time with rate θ, and
a given joint distribution for the service time and
patience.

(i) Use the stationary diffusion approximation for
the critically loaded Erlang-A in Garnett et al. (2002)
and, in particular, the formula for the proportion of
abandonment in p. 218 of Garnett et al.: For a service
system with s agents, define β � (s −λ/µ)/

√
λ/µ. Then

the abandonment ratio can be approximated by

� (Ab) ≈
[
1−

h(β
√
µ/θ)

h(β
√
µ/θ+

√
µ/θ)

] [
1+

h(β
√
µ/θ)√

µ/θh(−β)

]−1

,

(14)
where h is the hazard function of the standard normal
random variable. Approximate the abandonment rate
αλ(s)�λ ·� (Ab) and compute the optimal staffing level
s0 that solves (11) (without dependence). Let � ∗(Ab)
denote the proportion of abandonment under s0 in the
Erlang-A model.

(ii) For the dependent model under consideration,
compute the fluid waiting time w∗ for which the pro-
portion of abandonment is equal to � ∗(Ab) computed
in (i)—namely, for which FT(w∗)�� ∗(Ab). Compute the
effective service rate µ∗eff � 1/a(w∗).

(iii) Employ the approximation in (14) once again,
this time with service rate µ∗eff, and compute the capac-
ity s∗ forwhich the proportion of abandonment is equal
to � ∗(Ab).
Note that s∗ computed in step (iii) is of the form s∗ �

λ+β∗
√
λ for some β∗ ∈�. Then the proposed number of

agents in the real system is ds∗e—namely, the smallest
integer larger than s∗.
Numerical Example. Table 5 demonstrates the sub-
stantial improvements obtained by employing the
above procedure. In this table, the capacity and result-
ing cost obtained using our staffing algorithm is com-
pared with the fluid prescriptions and the optimal val-
ues, which are estimated via simulations. Observe, in
particular, that the optimality gap in the cost reduces
to 1.8% under our heuristic when p � 3.5 and r � 1.0,
compared with 26% under the fluid prescription.
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Table 5. Optimal Staffing of Systems with Dependencies: Simulations, Fluid Prescriptions,
and Heuristic (λ � 100, c � 1, p � 3.5)

Correlation Optimal Fluid model Heuristic

r Capacity Capacity Cost gap (%) Capacity Cost gap (%)

−0.4 98 100 0.3 101 0.5
−0.2 102 100 0.2 103 0.2
0 104 100 1.2 104 0.0
0.2 106 100 3.3 105 0.2
0.4 108 100 6.5 105 0.5
0.6 108 100 11.2 106 0.6
0.8 109 100 17.6 106 1.2
1 110 100 26.0 106 1.8

7. Summary
We considered a queueing model for large service
systems in which the patience of customers depends
on their individual service times. Since this depen-
dency renders exact analysis intractable even if the
marginal service time and patience are exponentially
distributed, we utilized a stationary fluid model to
approximate the system’s steady state. That fluid
model can be employed to provide accurate approxi-
mations of key performance measures of overloaded
systems with any jointly continuous service-time and
patience distribution, as is demonstrated via simu-
lation experiments. Moreover, since the fluid model
is characterized via the full joint distribution of ser-
vice and patience times, it can be applied to obtain
important qualitative results. In particular, we applied
the fundamental PQD stochastic order and the CST
to obtain structural results regarding the impact of
the dependence on the fluid model. Our qualitative
results were shown to hold for the important family of
Gaussian copulas, which is often employed in practice
to analyze joint distributions because of its analytical
tractability.
We then implemented the framework we developed

to study an optimal staffing problemwhen staffing and
abandonment costs are incurred. The fluid-optimal
prescriptions were shown to be very close to the true
optimum, as evaluated via simulations, in the over-
loaded regime, but the optimality gap can be sub-
stantial when the fluid-optimal solution puts the sys-
tem in the critically loaded regime. To handle that
latter case, we proposed a simple algorithm to compute
a square-root safety-staffing recommendation, based
on a heuristic adjustment of an existing second-order
refinement for the Erlang-A (independent) model,
together with our characterization for the effective ser-
vice rate. Numerical examples demonstrate that the
proposed heuristic can decrease the optimality gap
substantially, even formoderate positive dependencies,
when the abandonment penalty (equivalently, the rev-
enue from service) is relatively large.

Future Research. There are many directions for
related future research. One needs to develop effi-
cient econometric methods to accurately estimate the
joint distribution for the service and patience times
from data. In doing so, one also needs to carefully
address the censoring problem due to customer aban-
donments; for example, see Brown et al. (2005). It also
remains to formally develop second-order (diffusion-
type) approximations for critically loaded systems.
Finally, it remains to describe the transient fluid
approximation and prove that both the transient and
the stationary fluid models hold as weak limits for the
stochastic system and its steady state, respectively, in
the many-server heavy-traffic regime.
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Appendix A. More on Copulas and Conditional
Service Time

A.1. Generating Gaussian Copulas and t-Copulas
We now provide details on how to generate dependent
bivariates (S,T) via a Gaussian copula and t-copulas. The
procedures we describe below are used to generate different
joint distributions that correspond to Figure 1.

Let rG be a number in [−1, 1], and letΦ( · ) denote the cdf of
the standard normal random variable. The followingNORTA
procedure, which was proposed in Cario and Nelson (1997),
produces a bivariate (S,T)with some correlation coefficient r
that is a bĳective function of rG ; we elaborate below.

Generating (S,T) Using Gaussian Copula (NORTA)
1. Generate two independent standard normal random

variables Z1 and Z2.
2. Let V1 � Z1 and V2 � rGZ1 +

√
1− r2

GZ2. Then V1 and V2
are two standard normal random variables with correlation
coefficient rG .

3. Let S � F−1
S (Φ(V1)) and T � F−1

T (Φ(V2)). The correlation
coefficient r between the random variables S and T gener-
ated via the algorithm above is a continuous function of rG .
To generate a bivariate (S,T)with a specific correlation r, we
build on the following lemma; see theorem 2 of Cario and
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Nelson (1997) for its proof and for further details. Let
¯
r and

r̄ be the minimal and maximal attainable correlation coeffi-
cients of S and T, respectively. (Note that

¯
r may be larger than

−1 and r̄ may be smaller than 1; for example, if S and T are
both exponential random variables, then

¯
r ≈−0.64.)

Lemma 2. For two densities fS and fT and a fixed number x ∈
[−1, 1], let Sx and Tx be the random variables generated via
NORTA by taking rG � x, and let r(x) denote the correlation
between Sx and Tx . Then r: x 7→ [

¯
r, r̄] is strictly increasing, with

r(−1)�
¯
r and r(1)� r̄.

In particular, the minimal and maximal attainable corre-
lation between two marginal distributions can be generated
via NORTA. Moreover, because of the monotonicity of r(x)
and its inverse, it is easy to find the value of rG that gives any
prespecified attainable correlation coefficient. Finally, it can
be easily verified that r(rG) � 0 if and only if rG � 0, so that
two random variables generated by the Gaussian copula are
independent if and only if they are uncorrelated.

We next describe the procedure proposed in Demarta and
McNeil (2005) for generating a bivariate (S,T) using t-copula.
Generating (S,T) Using t-Copula with Degree n

1. Generate two independent standard normal random
variables Z1 and Z2.

2. Let V1 � Z1 and V2 � rt Z1 +
√

1− r2
t Z2. Then V1 and V2

are two standard normal random variables with correlation
coefficient rt .

3. Generate a random variable Y having the chi-square
distribution with n degrees of freedom, and let U � n/Y.

4. Let X1 �
√

UV1 and X2 �
√

UV2.
5. Let S � F−1

S (tn(X1)) and T � F−1
T (tn(X2)), where tn( · ) is

the cdf of the t-distribution with n degrees of freedom.

A.2. Ranking Gaussian Copulas with Given Marginals
Recall that G :� G( fS , fT) denotes the set of joint distribu-
tions generated by the Gaussian copula with fixed marginals
fS and fT . We state a few properties of G. First, a bivariate
with any attainable correlation coefficient can be generated
by a Gaussian copula and is characterized by its correlation.
In particular, if (S1 ,T1) and (S2 ,T2) are two distinct elements
in G, then their respective correlation coefficients are nec-
essarily different—that is, either r1 < r2, or r2 < r1, where
ri is the correlation coefficient of (Si ,Ti), i � 1, 2. Thus, an

Figure B.1. (Color online) Convergence of Queue Length of Stochastic System to Steady State
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important advantage of focusing on the set of bivariates with
fixed marginals that are generated by Gaussian copulas, is
that the corresponding joint distributions are fully character-
ized by the correlation coefficient r, so that one parameter
can be used as a measure of dependence (as opposed to PQD
order, which is a nonparametric measure of dependence).
Second, bivariates in the set G are independent if and only if
they are uncorrelated. Third, the class of bivariates generated
by the Gaussian copula can be ranked by PQD order, as was
mentioned above. We therefore have the following lemma.
Lemma 3. If for (S1 ,T1), (S2 ,T2) ∈ G it holds that r1 < r2, then
(S1 ,T1) ≤PQD (S2 ,T2).

Note that the condition r1 < r2 is assumed without loss of
generality, since the correlation coefficients of any two dis-
tinct elements in G must be strictly ordered.

A.3. Relating the CST, PQD Order, and Gaussian
Copula Together

The following two lemmas provide natural sufficient condi-
tions for MCST, and they link the monotonicity of the CST to
PQD and Gaussian copula.
Lemma 4. If � (S > u | T � w) is increasing in w, then (S,T) is
PQD and has an ICST. If � (S > u | T � w) is decreasing in w, then
(S,T) is NQD and has a DCST.

Lemma 4 provides a natural sufficient condition for (S,T)
to be PQD (NQD) and have an MCST. When (S,T) ∈ G, both
PQD andmonotonicity of the CST are determined by the sign
of the correlation coefficient r, as the next lemma shows.
Lemma 5. Let (S,T) ∈ G with correlation coefficient r. Then (i) if
r > 0, then (S,T) is PQD and has an ICST; (ii) if r < 0, then (S,T)
is NQD and has a DCST; and (iii) if r � 0, then (S,T) has a CCST.

Appendix B. Time to Stationarity
In general, many-server queueing systems in heavy traffic
tend to converge to stationarity much faster than single-
server systems; see, for example, the discussion in E.C.1 in
Perry andWhitt (2009). We now demonstrate via simulations
that our system with dependence indeed converges quickly
to its stationary behavior. We simulate systems with and
without dependence, starting the systems at two extreme ini-
tial conditions; the systems in Figure B.1(a) are initialized
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Table C.1. Optimal Staffing Under LIFO and Positive Dependence (λ � 100)

p/c � 1.25 p/c � 3.5

Capacity Cost gap Capacity Cost gap

r Optimal Fluid Percentage Optimal Fluid Percentage

0 94 100 1.4 104 100 1.0
0.2 95 100 0.7 105 100 1.9
0.4 95 100 0.5 105 100 2.8
0.6 98 100 0.3 107 100 3.6
0.8 99 100 0.3 108 100 4.2
1 100 100 0.0 108 100 4.7

empty, and the initial queue length of the systems depicted
in Figure B.1(b) is much larger than the stationary queue. The
system parameters and distributions are the same as in
the numerical experiment presented in Table 1. Specifically,
the system has an arrival rate λ � 110 and s � 100 agents,
and the service and patience times are exponentially dis-
tributed with rate µ � 1 and θ � 1/2, respectively. For each
simulated system, we take averages of 500 independent
runs and use the queue length metric to demonstrate the
convergence.

Observe that the shape of the trajectories of queues in
the dependent models is similar to that of the independent
model. Since it is known that both the stochastic system and
its fluid limit converge exponentially fast to stationarity in
the independent case, we conjecture that the same is true for
the dependent model. We further remark that we consider
extreme initial conditions to make the shape of the trajecto-
ries apparent. However, in practice, a stationary analysis is
performed over time blocks, with the initial condition of the
fluid model being much closer to its stationary point. (Sim-
ilarly, the initial distribution is much closer to the station-
ary one, where the distance is measured via an appropriate
metric.) Therefore, the actual time it takes to be sufficiently
close to stationarity is much shorter than that in the examples
shown in Figure B.1.

Appendix C. Capacity Sizing Under a
Throughput-Maximizing Policy

In this appendix, we consider the capacity sizing prob-
lem when applying the optimal control policy to maximize
throughput. The following proposition follows directly from
proposition 3 in Bassamboo and Randhawa (2015).

Proposition 8. The throughput-maximizing policy is FIFO if f
has a DCST, and is last-in-first-out (LIFO) if f has an ICST. If f
has a CCST, any nonidling policy yields the same throughput.

In particular, since congestion is beneficial when the
dependence is negative, we would like to serve customers in
the order at which they arrive, so that customers having short
patience, but long service requirements, voluntarily aban-
don the system. However, under positive dependence, less
patient customers are also those who tend to require short
services, and since we cannot identify those customers upon
arrival, the best we can do is to have µeff � µ. This effective
service rate can be achieved (in the fluid model) by employ-
ing LIFO, since the waiting of customers who enter service is
negligible, and so no screening of customers occurs.

For bivariates generated by Gaussian copulas, the condi-
tions on MCST in Proposition 8 reduce to a condition on the
sign of the correlation coefficient.

Corollary 6. Let (S,T) ∈G. Then the throughput-maximizing pol-
icy is FIFO if r < 0 and LIFO if r > 0. Any nonidling policy yields
the same throughput if r � 0.

The discussion in Section 6.1 regarding the optimal capac-
ity under a negative dependence still applies, because FIFO
is the optimal policy in this case. Hence we only need to
consider the case with a positive dependence, for which
LIFO is optimal. Under LIFO, the throughput is equal to
sµ, so that the profit Πλ(s) is simply equal to (pµ − c)s,
as in the independent model. We conclude that when the
throughput-maximizing control policy is adopted, the capac-
ity prescribed in Proposition C.1 remains optimal. Numerical
studies for the system considered in Section 6.3, presented
in Table C.1, show that the fluid-optimal capacity is fairly
accurate under the throughput-maximizing policy.

In ending, we remark that in overloaded systems, cus-
tomers will be left to wait with no chance of ever entering
service if LIFO is employed, and so it is infeasible to employ
in observable service systems. Nevertheless, from the fluid
perspective, we can achieve the same throughput by employ-
ing an admission control policy that rejects arrivals if the
number of customers waiting in queue is larger than a cer-
tain threshold, and this threshold is negligible for the fluid
model.

Appendix D. Proofs
D.1. Auxiliary Results
Before presenting the proofs of the results in the paper, we
state two auxiliary results that will be employed in our proofs
below.

The proof of the following lemma can be found in Shaked
and Shanthikumar (2007, p. 389).

Lemma 6. If (S1 ,T1) ≤PQD (S2 ,T2), then Ɛ(S1 | T1 ≤ z) ≥ Ɛ(S2 | T2
≤ z) and Ɛ(S1 | T1 > z) ≤ Ɛ(S2 | T2 > z) for all z ≥ 0.

For the next auxiliary result, whose statement follows eas-
ily from (3), let w(s) denote the steady-state offered wait as a
function of the capacity s when λ and f are kept fixed. Using
the monotonicity of φ( · ), we obtain the following lemma.

Lemma 7. We have that w(s) is strictly decreasing on (0, λ/µ).
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D.2. Proofs of the Main Results in the Paper
We now prove the main results (propositions and corollaries)
in the paper in the order in which they appear.

Proof of Proposition 1. Since fS and fT are strictly positive
over [0,∞), φ(w) is strictly decreasing. Thus, there exists a
unique solution to (3). �

Proof of Proposition 2. We start by showing that w̄ > 0 if and
only if ρ > 0. First, it follows immediately from the fact that
φ(w) ≤ φ(0) � Ɛ[S] � 1/µ for all w ≥ 0, so that (6) is not well
defined when ρ ≤ 1. In particular, there exists no overload
equilibrium for the fluid model in this case.

To prove the other direction, we assume that ρ > 1 and
make the contradictory assumption that w̄ � 0. It then fol-
lows from (4) that aeff � a(w̄) � Ɛ[S], so that µeff � 1/aeff � µ,
contradicting the first equality in (7). Thus, it must hold that
w̄ > 0.

We next prove that ρ > 1 if and only if ρeff > 1. To this
end, observe that, by (5), ρeff ≤ 1 is equivalent to sµeff ≥ λ,
which, together with the second equality in (7), implies that
w̄ � 0. Hence, by the preceding argument, ρ > 1 implies that
ρeff > 1 as well. For the other direction, note that, by (5),
ρeff > 1 implies that µeff < λ/s � ρµ. It then follows from the
first equality in (7) that w̄ > 0, and thus ρ > 1. �

Proof of Proposition 3. By Corollary 4.1 in Reich (2012), if
g(w) is increasing (decreasing), then a(w) is also increasing
(decreasing). The throughput R(λ) � s/a(w(λ)) is increasing
(decreasing) in w(λ) if a(w(λ)) is decreasing (increasing) in
w(λ). By (3), given s and f , the offered wait w(λ), as a func-
tion of λ, is increasing in λ. Thus, R(λ) is increasing (decreas-
ing) in λ if a is decreasing (increasing), which is implied by
having g decreasing (increasing). �

Proof of Corollary 1. Corollary 1 follows from Proposition 3
and Lemma 5. �

Proof of Proposition 4. The offered wait w solving (3) is a
function of s, which we denote by w(s). It can be easily verify
that w(s) is continuously differentiable in s. Note that w(s)
is strictly decreasing in s, so that w′(s) < 0. Differentiating
both sides of (3) with respect to s gives −λ ∫∞0 x f (x ,w(s)) dx ·
w′(s)� 1, so that

− λw′(s)�
(∫ ∞

0
x f (x ,w(s)) dx

)−1

. (D.1)

The throughput R � λFc
T(w(s)) is decreasing in w(s) and

hence increasing in s. Taking the derivative of R(s), R′(s) �
−λ fT(w(s))w′(s), and plugging the value of −λw′(s) in (D.1)
gives

R′(s)�
fT(w(s))∫ ∞

0 x f (x ,w(s)) dx
�

1
Ɛ(S | T � w(s)) �

1
g(w(s)) .

Therefore R′(s) > 0 for all s ∈ (0, λ/µ). If g is increasing, then
R′(s) is increasing in s; hence R(s) is convex in s. Analogously,
R(s) is concave in s if g is decreasing. �

Proof of Corollary 2. Corollary 2 follows from Proposition 4
and Lemma 5. �

Proof of Proposition 5. It suffices to prove that w1 ≤ w2,
because the stated inequalities for Ri and Qi , i � 1, 2, will fol-
low immediately from (8) and (9) and the fact that T1 and T2
have the same marginal cdf FT . To this end, we will prove
that the following inequality holds for φ in (2):

φ1(z) ≤ φ2(z), for all z ≥ 0. (D.2)

Indeed, if (D.2) holds, then ρφ1(w2) ≤ ρφ2(w2) � 1/µ. Since
ρφi(wi) � 1/µ for i � 1, 2, and since φ1 is strictly decreasing
and ρφ1(w1)� 1/µ, (D.2) implies that w1 ≤ w2.

It remains to show that (D.2) holds. Note that ψz(s , t) �
(s1{t > z}) is a supermodular function in (s , t). It also holds
that φi(z)� Ɛ[ψz(Si ,Ti)]. Since PQD ordering and supermod-
ular ordering are equivalent in the bivariate case (see 9.A.18
of Shaked and Shanthikumar 2007, p. 395), (S1 ,T1) ≤PQD
(S2 ,T2) implies Ɛ[ψz(S1 ,T1)] ≤ Ɛ[ψz(S2 ,T2)]; that is, φ1(z) ≤
φ2(z). �
Proof of Corollary 3. The statement of the corollary fol-
lows from the fact that the inequality in (D.2) is strict for
(S1 ,T1), (S2 ,T2) ∈G( fS , fT)with r1 < r2. To show this, note that

Ɛ(Si | Ti > z)�
∫ ∞

0
� (Si > u | Ti > z) du

�

∫ ∞
0 � (Si > u ,Ti > z) du

Fc
T(z)

. (D.3)

In the proof of Lemma 3 we show that � (S1 > u ,T1 > z) <
� (S2 > u ,T2 > z) for all u , z > 0. It then follows from (D.3)
that Ɛ(S1 | T1 > z) < Ɛ(S2 | T2 > z) for all z > 0. Hence, w1 < w2,
implying that R1 > R2 and Q1 <Q2. �

Proof of Proposition 6. If g is increasing, then by Proposi-
tion 4, R(s) is convex increasing in s. Hence, the profit func-
tion Πλ(s) is convex in s, and maximizing Πλ(s) gives a cor-
ner solution. Note thatΠλ(0)� 0 andΠλ(λ/µ)� (pµ− c)λ/µ.
Hence Πλ(λ/µ) > 0 if and only if pµ > c. In other words,
s∗λ � λ/µ is optimal if and only if pµ > c.

Next, if g is decreasing, we optimize the cost function
C̄λ(s) in (12). Or equivalently, we minimize C̄λ(w) in (13).
The derivative of C̄λ(w) is C̄′λ(w) � fT(w)(p − c g(w)); since g
is decreasing, C̄λ(w) is quasiconvex in w. Hence, any local
minimizer is globally optimal. If g(∞) < p/c < g(0), since g
is continuous, there is a unique w∗ that solves g(w∗) � p/c,
and w∗ is the optimizer. The optimal capacity is given by (7):
s∗λ � λFc

T(w∗)a(w∗). If p/c ≥ g(0), then C̄′λ(w) ≥ 0 for all w, so
that w∗ � 0, and s∗λ � λ/µ is fluid optimal. If p/c ≤ g(∞), then
C̄′λ(w) ≤ 0 for all w; hence w∗ �∞ and s∗λ � 0. �

Proof of Corollary 4. The cost function for a system whose
service time and patience time are distributed as Si and Ti is

Ci(s)� cs + pαi(s)� cs + p(λ−Ri(s))� pλ+ cs − pRi(s).

Let s∗i be the optimal capacity for a system with service time
and patience time (Si ,Ti). Then,

C∗2 � pλ+ cs∗2 − pR2(s∗2) ≥ pλ+ cs∗2 − pR1(s∗2)
≥ pλ+ cs∗1 − pR1(s∗1)� C∗1 ,

where the first inequality follows from Proposition 5 and
the second inequality follows from the optimality of s∗1 for a
system with service and patience time (S1 ,T1). �
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Proof of Proposition 7. The first-order condition (13) of the
capacity optimization problem gives

Ɛ(S1 | T1 � w1(s∗1))� Ɛ(S2 | T2 � w2(s∗2))� p/c ,

where wi(s) is the offered wait for a system with capacity s
and service and patience time (Si ,Ti). We will next show that

g1(0) :� Ɛ(S1 | T1 � 0) ≥ Ɛ(S2 | T2 � 0)�: g2(0). (D.4)

To prove (D.4), we take the contradictory assumption that
Ɛ(S1 | T1 � 0) < Ɛ(S2 | T2 � 0). As we assume continuity of gi
for i � 1, 2, we can therefore find a δ > 0, such that Ɛ(S1 | T1 �

z) < Ɛ(S2 | T2 � z) for all z < δ. Note that

Ɛ(Si | Ti ≤ z)�
∫ z

0 Ɛ(Si | Ti � t) fT(t) dt

FT(z)
.

Since T1 and T2 have the same marginal cdf FT , Ɛ(S1 | T1 ≤ δ)
< Ɛ(S2 | T2 ≤ δ), contradicting Lemma 6. Hence, (D.4) must
hold.

We will show below that there exists a t0, 0 < t0 <∞, such
that for all z ∈ [0, t0], it holds that g1(z) ≥ g2(z). For that t0,
let M :� g2(t0). Since g2 is strictly decreasing, M < g2(0) ≤
g1(0). If M < p/c < g2(0) ≤ g1(0), then the equality g1(w1(s∗1))�
g2(w2(s∗2)) � p/c and the fact that g1 and g2 are both strictly
decreasing functions imply that

w1(s∗1) ≥ w2(s∗2). (D.5)

Observe that the inequality s∗1 > s∗2 implies that w1(s∗1) <
w1(s∗2) ≤ w2(s∗2), where the first inequality follows from
Lemma 7 and the second inequality follows from Proposi-
tion 5, contradicting (D.5). Hence, it must hold that s∗1 ≤ s∗2, as
stated.

It remains to show the existence of a finite t0 > 0, such
that g1(z) ≥ g2(z) for all z ∈ [0, t0]. To this end, we consider
the cases h(0) > 0 and h(0) � 0 separately. Assume first that
h(0) > 0. In this case, g1(0) > g2(0) so that g1(z) > g2(z) in a
right neighborhood of 0 because of the right continuity of
g1 and g2 at 0. Define t0 :� infz≥0{g1(z) ≤ g2(z)}. Note that
t0 <∞ because ∫∞0 fT(y)g1(y) dy � ∫∞0 fT(y)g2(y) dy � Ɛ[S]. (If
g1(z) > g2(z) for all z ≥ 0, then this latter equality cannot
hold.)

We next consider the case h(0) � 0. If h(t) � 0 for all t in
some right neighborhood of 0—namely, if there exists t0 > 0
such that h(z)� 0 for all z ∈ [0, t0]—then it trivially holds that
g1(z) ≥ g2(z) for all z ∈ [0, t0]. Hence, we need only consider
the case in which h(0)� 0 and h is not identically equal to 0 in
any right neighborhood of 0. That is, for any ε > 0, there exists
t ∈ (0, ε) such that h(t) , 0. Define t0 � inf{z > 0: h(z)� 0},
where inf(�) :�∞. We first claim that t0 > 0. Indeed, if t0 � 0,
then theremust exist a positive sequence {zn : n ≥ 1} such that
h(zn)� 0 and zn→ 0 as n→∞, contradicting the assumption
that the principle of permanence holds for h at z � 0. We
therefore have t0 > 0. We next show that t0 is finite and that
h(z) ≥ 0 for all z ∈ [0, t0], so that g1(z) ≥ g2(z) for all z ∈
[0, t0]. If t0 � ∞, note that by the definition of t0, it holds
that h(z) > 0 or h(z) < 0 for all z > 0. (Otherwise, if the value
of h changes sign in (0, t0), then the continuity of h implies
that there exists a ẑ ∈ (0, t0) such that h(ẑ) � 0, contradicting
the definition of t0.) Since h(z) < 0 for all z > 0 implies that
Ɛ(S1 | T1 ≤ δ) < Ɛ(S2 | T2 ≤ δ) for all δ > 0, a contradiction to

Lemma 6, we necessarily have h(z) > 0 for all z ∈ (0, t0). But
then g1(z) > g2(z) for all z > 0 which, as was shown above for
the case h(0)> 0, contradicts the fact that Ɛ[S1]�Ɛ[S2]. Hence,
it must hold that t0 <∞. Repeating the same argument above
shows that h(z) > 0 for all z ∈ (0, t0), so that h(z) ≥ 0 for all
z ∈ [0, t0]. �

Proof of Corollary 5. If (S1 ,T1), (S2 ,T2) ∈G( fS , fT) satisfy r1 <
r2 < 0, then g1(z) > g2(z) for sufficiently small z > 0. Define
t0 :� infz{g1(z) ≤ g2(z)}; then t0 > 0. A similar argument to the
one in the proof of Proposition 7 gives t0 <∞. For all z ∈ (0, t0),
we have g1(z) > g2(z). Define M :� g2(t0). If p/c > M, then
the first-order condition g1(w1(s∗1))� g2(w2(s∗2))� p/c implies
w1(s∗1) > w(s∗2). A similar argument to the one in the proof of
Proposition 7 can be used to show that s∗1 < s∗2. �

D.3. Proofs of the Lemmas in the Paper
Proof of Lemma 3. As demonstrated in Appendix A.1,

(Si ,Ti)
d
� (F−1

S (Φ(Γi)), F−1
T (Φ(Ξi))), i � 1, 2,

where d
� denotes equality in distribution and (Γi ,Ξi) is a

bivariate normal random variable with correlation coeffi-
cient r i

G . It follows from Lemma 2 that r1 < r2 if and only
if r1

G < r2
G . Therefore, it suffices to show that if r1

G ≤ r2
G ,

then (S1 ,T1) ≤PQD (S2 ,T2). By theorem 9.A.1 of Shaked and
Shanthikumar (2007, p. 390), PQD ordering is preserved
under component-wise increasing transformation of random
vectors. Since F−1

S (Φ( · )) and F−1
T (Φ( · )) are both increasing, it

suffices to show that if r1
G ≤ r2

G , then (Γ1 ,Ξ1) ≤PQD (Γ2 ,Ξ2). This
latter result follows from the facts that (1) bivariate normal
distributions with the same marginals are monotone in the
association ordering with respect to their correlation coeffi-
cient (Shaked and Shanthikumar 2007, p. 419, example 9.E.6),
and (2) association ordering implies PQD ordering (Shaked
and Shanthikumar 2007, p. 417, theorem 9.E.2).

We now prove a stronger version of the lemma, which we
employ in the proof of Corollary 3, requiring a strict form
of the PQD order; in particular, we prove that if r1 < r2, then
� (S1 ≤ x ,T1 ≤ y) < � (S2 ≤ x ,T2 ≤ y) for all x , y > 0. With an
abuse of notation, we write F ∈ G :� G( fS , fT) if F is the joint
cdf of a bivariate (S,T) ∈ G. Since a bivariate normal random
variable is completely characterized by its mean and corre-
lation coefficient rG , it follows from Lemma 2 that the cdfs
{F ∈ G} can be indexed by the correlation coefficient r of
(S,T). Moreover, again by Lemma 2, there exists a bĳection
mapping from the cdfs in G to the family of bivariate normal
random variables with a zero mean vector indexed by their
correlation coefficient rG . Thus, we can equivalently param-
eterize the elements {F ∈ G} by the correlation coefficient rG
of the underlying bivariate normal random variables, and we
show that {FrG

(x1 , y1): −1 ≤ rG ≤ 1} ≡ {Fr(x1 , y1): ¯
r ≤ r ≤ r̄} is

increasing in rG , and thus in r, for all x1 , y1 ≥ 0. (Recall that
¯
r

and r̄ denote the minimal andmaximal attainable correlation
coefficients of S and T, respectively; see Appendix A.1.)

Let ϕrG
denote the density function of (Γ,Ξ) with correla-

tion coefficient rG :

ϕrG
(u1 , u2)�

1
2π
√

1− r2
G

exp
(
−

u2
1 − 2rG u1u2 + u2

2

2(1− r2
G)

)
.
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For Φ and φ denoting the cdf and probability density func-
tion (pdf) of the standard normal random variable, respec-
tively, let γ(x) :�Φ−1(FS(x)) and ξ(y) :�Φ−1(FT(y)). Then, Γ

d
�

γ(S) and Ξ d
� ξ(T) so that the joint density of (S,T) is

frG
(x , y) :� 1

2π
√

1− r2
G

exp
(
−
γ(x)2 − 2rGγ(x)ξ(y)+ ξ(y)2

2(1− r2
G)

)
· γ′(x)ξ′(y),

where γ′(x)� fS(x)/φ(γ(x)) and ξ′(y)� fT(y)/φ(ξ(y)). Then

FrG
(x1 , y1)�

∫ y1

0

∫ x1

0
frG
(x , y) dx dy

�

∫ y1

0

∫ x1

0

1
2π
√

1− r2
G

· exp
(
−
γ(x)2 − 2rGγ(x)ξ(y)+ ξ(y)2

2(1− r2
G)

)
· γ′(x)ξ′(y) dx dy ,

so that
∂FrG
(x1 , y1)
∂rG

�

∫ y1

0

∫ x1

0

∂

(
1

2π
√

1−r2
G

exp
(
− γ(x)

2−2rGγ(x)ξ(y)+ξ(y)2

2(1−r2
G )

)
γ′(x)ξ′(y)

)
∂rG

dxdy

�
1

2π

∫ y1

0

∫ x1

0
e−

ξ(y)2
2

∂

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2
G )

)
γ′(x)ξ′(y)

)
∂rG

dxdy

�
1

2π

∫ y1

0

∫ x1

0
e−

ξ(y)2
2


∂

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2
G )

)
γ′(x)ξ′(y)

)
∂rG

√
1− r2

G

1− r2
G

+

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2
G )

)
γ′(x)ξ′(y)

)
2rG

2
√

1−r2
G

1− r2
G


dxdy

�
1

2π
√

1− r2
G

∫ y1

0

∫ x1

0
e−

ξ(y)2
2 ξ′(y)

γ
′(x)

∂

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2
G )

))
∂rG

+γ′(x)

(
exp

(
− (γ(x)−rGξ(y))2

2(1−r2
G )

))
rG

1− r2
G

 dxdy. (D.6)

Now,∫ x1

0
γ′(x)

∂(exp(−(γ(x) − rGξ(y))2/(2(1− r2
G))))

∂rG
dx

�−
∫ x1

0
γ′(x)exp

(
−
(γ(x) − rGξ(y))2

2(1− r2
G)

)
·

rG[γ(x) − rGξ(y)][γ(x) − ξ(y)/rG]
(1− r2

G)2
dx

�− 1
(1− r2

G)2

∫ x1

0
exp

(
−
(γ(x) − rGξ(y))2

2(1− r2
G)

)
· rG

[
γ(x) −

ξ(y)
rG

]
d[γ(x) − rGξ(y)]2

�
1

1− r2
G

{
rG

[
γ(x) −

ξ(y)
rG

]
exp

(
−
(γ(x) − rGξ(y))2

2(1− r2
G)

)����x1

x�0

−
∫ x1

0
rGγ

′(x)exp
(
−
(γ(x) − rGξ(y))2

2(1− r2
G)

)
dx

}
�

1
1− r2

G

{
rG

[
γ(x1) −

ξ(y)
rG

]
exp

(
−
(γ(x1) − rGξ(y))2

2(1− r2
G)

)
−

∫ x1

0
rGγ

′(x)exp
(
−
(γ(x) − rGξ(y))2

2(1− r2
G)

)
dx

}
. (D.7)

Plugging (D.7) into (D.6),

∂FrG
(x1 , y1)
∂rG

�
1

2π(1− r2
G)3/2

∫ y1

0
rG e−ξ(y)

2/2ξ′(y)
[
γ(x1) −

ξ(y)
rG

]
· exp

(
−
(γ(x1) − rGξ(y))2

2(1− r2
G)

)
dy

�− 1
2π(1− r2

G)3/2

∫ y1

0
e−γ(x1)2/2ξ′(y)

· (ξ(y) − rGγ(x1))exp
(
−
(ξ(y) − rGγ(x1))2

2(1− r2
G)

)
dy

�
1

2π(1− r2
G)1/2

[
e−γ(x1)2/2 exp

(
−
(ξ(y) − rGγ(x1))2

2(1− r2
G)

)] ����y1

y�0

�
1

2π(1− r2
G)1/2

[
e−γ(x1)2/2 exp

(
−
(ξ(y1) − rGγ(x1))2

2(1− r2
G)

)]
.

It follows that ∂FrG
(x1 , y1)/∂rG > 0 for all x1 , y1 > 0, implying

the statement of the lemma. �

Proof of Lemma 4. Note that g(w) � Ɛ[S | T � w] � ∫∞0 � (S >
u | T � w) du. Since � (S > u | T � w) is increasing in w and
fS is fixed, g is necessarily increasing. It remains to show
that � (S > u | T � w) increasing in w implies PQD. Follow-
ing Block et al. (1985), we say that (S,T) is positively depen-
dent through stochastic ordering (PDS) if � (S > u | T � w) is
increasing in w. That PDS implies PQD is proved in Block
et al. (1985, p. 82). �

Proof of Lemma 5. By Lemma 4, we need to show that if
(S,T) ∈ G, then � (S > u | T � w) is strictly increasing in w
(PDS) (see the proof of Lemma 4) if r > 0 and strictly decreas-
ing in w if r < 0. Note that if (S,T) ∈ G( fS , fT), then (S,T)

d
�

(F−1
S (Φ(Γ)), F−1

T (Φ(Ξ))) for a bivariate normal random variable
(Γ,Ξ)with correlation coefficient rG . By Block et al. (1985, the-
orem 2.1), PDS is preserved under component-wise increas-
ing transformation of random vectors. Since r > 0 implies
rG > 0 by Lemma 2, and since F−1

S (Φ( · )) and F−1
T (Φ( · )) are

both increasing, it suffices to show that (Γ,Ξ) is PDS if rG > 0.
This latter result is established in Block et al. (1985, exam-
ple 4.1). The proof for r < 0 is similar. �

Endnotes
1 In fact, the convergence of the stochastic systems to the steady state
is fairly fast; see Appendix B for more details.
2 In general, for given marginals there can be values in [−1, 1] that r
cannot achieve. For example, if both the marginals are exponential
distributions, then r cannot attain values smaller than −0.64. More-
over, marginal distributions together with a correlation coefficient
do not uniquely determine a joint distribution. Extreme examples in
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Sharakhmetov and Ibragimov (2002) and Embrechts et al. (2002) give
a continuum of bivariate distributions with the same marginals and
correlation coefficient.
3The analysis in Section 6.1 is extended in Appendix C to consider
the optimal control policies.
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